
COVER FE ATURE

23FEBRUARY 2012Published by the IEEE Computer Society0018-9162/12/$31.00 © 2012 IEEE 

ances matter. CAP prohibits only a tiny part of the design 
space: perfect availability and consistency in the presence 
of partitions, which are rare.

Although designers still need to choose between consis-
tency and availability when partitions are present, there 
is an incredible range of flexibility for handling partitions 
and recovering from them. The modern CAP goal should 
be to maximize combinations of consistency and avail-
ability that make sense for the specific application. Such 
an approach incorporates plans for operation during a 
partition and for recovery afterward, thus helping de-
signers think about CAP beyond its historically perceived 
limitations.

WHY “2 OF 3” IS MISLEADING
The easiest way to understand CAP is to think of two 

nodes on opposite sides of a partition. Allowing at least 
one node to update state will cause the nodes to become 
inconsistent, thus forfeiting C. Likewise, if the choice is to 
preserve consistency, one side of the partition must act 
as if it is unavailable, thus forfeiting A. Only when nodes 
communicate is it possible to preserve both consistency 
and availability, thereby forfeiting P. The general belief 
is that for wide-area systems, designers cannot forfeit P 
and therefore have a difficult choice between C and A. 
In some sense, the NoSQL movement is about creating 
choices that focus on availability first and consistency 
second; databases that adhere to ACID properties (atomi-
city, consistency, isolation, and durability) do the opposite. 
The “ACID, BASE, and CAP” sidebar explains this difference 
in more detail.

I n the decade since its introduction, designers and 
researchers have used (and sometimes abused) the 
CAP theorem as a reason to explore a wide variety 
of novel distributed systems. The NoSQL movement 

also has applied it as an argument against traditional 
databases. 

The CAP theorem states that any networked shared-data 
system can have at most two of three desirable properties:

 • consistency (C) equivalent to having a single up-to-date 
copy of the data;

 • high availability (A) of that data (for updates); and 
 • tolerance to network partitions (P).

This expression of CAP served its purpose, which was 
to open the minds of designers to a wider range of systems 
and tradeoffs; indeed, in the past decade, a vast range of 
new systems has emerged, as well as much debate on the 
relative merits of consistency and availability. The “2 of 3” 
formulation was always misleading because it tended to 
oversimplify the tensions among properties. Now such nu-

The CAP theorem asserts that any net-
worked shared-data system can have only 
two of three desirable properties. How-
ever, by explicitly handling partitions, 
designers can optimize consistency and 
availability, thereby achieving some trade-
off of all three.

Eric Brewer, University of California, Berkeley

CAP Twelve 
Years Later: 
How the 
“Rules” Have 
Changed



COVER FE ATURE

COMPUTER 24

In fact, this exact discussion led to the CAP theorem. In 
the mid-1990s, my colleagues and I were building a variety 
of cluster-based wide-area systems (essentially early cloud 
computing), including search engines, proxy caches, and 
content distribution systems.1 Because of both revenue 
goals and contract specifications, system availability was 
at a premium, so we found ourselves regularly choosing to 
optimize availability through strategies such as employing 

caches or logging updates for later reconciliation. Although 
these strategies did increase availability, the gain came at 
the cost of decreased consistency. 

The first version of this consistency-versus-availability 
argument appeared as ACID versus BASE,2 which was not 
well received at the time, primarily because people love 
the ACID properties and are hesitant to give them up. The 
CAP theorem’s aim was to justify the need to explore a 
wider design space—hence the “2 of 3” formulation. The 
theorem first appeared in fall 1998. It was published in 
19993 and in the keynote address at the 2000 Symposium 
on Principles of Distributed Computing,4 which led to 
its proof. 

As the “CAP Confusion” sidebar explains, the “2 of 3” 
view is misleading on several fronts. First, because parti-
tions are rare, there is little reason to forfeit C or A when 
the system is not partitioned. Second, the choice between 
C and A can occur many times within the same system 
at very fine granularity; not only can subsystems make 
different choices, but the choice can change according to 
the operation or even the specific data or user involved. 
Finally, all three properties are more continuous than 
binary. Availability is obviously continuous from 0 to 100 
percent, but there are also many levels of consistency, 
and even partitions have nuances, including disagreement 
within the system about whether a partition exists.

Exploring these nuances requires pushing the tra-
ditional way of dealing with partitions, which is the 
fundamental challenge. Because partitions are rare, CAP 
should allow perfect C and A most of the time, but when 
partitions are present or perceived, a strategy that detects 
partitions and explicitly accounts for them is in order. This 
strategy should have three steps: detect partitions, enter 
an explicit partition mode that can limit some operations, 
and initiate a recovery process to restore consistency and 
compensate for mistakes made during a partition.

CAP-LATENCY CONNECTION
In its classic interpretation, the CAP theorem ignores 

latency, although in practice, latency and partitions are 
deeply related. Operationally, the essence of CAP takes 
place during a timeout, a period when the program must 
make a fundamental decision—the partition decision:

 • cancel the operation and thus decrease availability,  
or

 • proceed with the operat ion and thus r isk 
inconsistency.

Retrying communication to achieve consistency, for 
example, via Paxos or a two-phase commit, just delays 
the decision. At some point the program must make the 
decision; retrying communication indefinitely is in essence 
choosing C over A.

ACID, BASE, AND CAP 

A CID and BASE represent two design philosophies at opposite 
ends of the consistency-availability spectrum. The ACID 

properties focus on consistency and are the traditional approach of 
databases. My colleagues and I created BASE in the late 1990s to 
capture the emerging design approaches for high availability and 
to make explicit both the choice and the spectrum. Modern large-
scale wide-area systems, including the cloud, use a mix of both 
approaches.

Although both terms are more mnemonic than precise, the 
BASE acronym (being second) is a bit more awkward: Basically 
Available, Soft state, Eventually consistent. Soft state and eventual 
consistency are techniques that work well in the presence of parti-
tions and thus promote availability.

The relationship between CAP and ACID is more complex and 
often misunderstood, in part because the C and A in ACID represent 
different concepts than the same letters in CAP and in part because 
choosing availability affects only some of the ACID guarantees. The 
four ACID properties are:

Atomicity (A). All systems benefit from atomic operations. 
When the focus is availability, both sides of a partition should still 
use atomic operations. Moreover, higher-level atomic operations 
(the kind that ACID implies) actually simplify recovery. 

Consistency (C). In ACID, the C means that a transaction pre-
serves all the database rules, such as unique keys. In contrast,  
the C in CAP refers only to single‐copy consistency, a strict  
subset of ACID consistency. ACID consistency also cannot be  
maintained across partitions—partition recovery will need to 
restore ACID consistency. More generally, maintaining invari- 
ants during partitions might be impossible, thus the need for  
careful thought about which operations to disallow and how to 
restore invariants during recovery. 

Isolation (I). Isolation is at the core of the CAP theorem: if the 
system requires ACID isolation, it can operate on at most one 
side during a partition. Serializability requires communication in 
general and thus fails across partitions. Weaker definitions  
of correctness are viable across partitions via compensation  
during partition recovery. 

Durability (D). As with atomicity, there is no reason to forfeit 
durability, although the developer might choose to avoid needing 
it via soft state (in the style of BASE) due to its expense.  
A subtle point is that, during partition recovery, it is possible to 
reverse durable operations that unknowingly violated an invariant 
during the operation. However, at the time of recovery, given a 
durable history from both sides, such operations can be detected 
and corrected. In general, running ACID transactions on each side 
of a partition makes recovery easier and enables a framework for 
compensating transactions that can be used for recovery from a 
partition.



25FEBRUARY 2012

Thus, pragmatically, a partition is a time bound on com-
munication. Failing to achieve consistency within the time 
bound implies a partition and thus a choice between C 
and A for this operation. These concepts capture the core 
design issue with regard to latency: are two sides moving 
forward without communication? 

This pragmatic view gives rise to several important con-
sequences. The first is that there is no global notion of a 
partition, since some nodes might detect a partition, and 
others might not. The second consequence is that nodes 
can detect a partition and enter a partition mode—a central 
part of optimizing C and A.

Finally, this view means that designers can set time 
bounds intentionally according to target response times; 
systems with tighter bounds will likely enter partition 
mode more often and at times when the network is merely 
slow and not actually partitioned.

Sometimes it makes sense to forfeit strong C to avoid the 
high latency of maintaining consistency over a wide area. 
Yahoo’s PNUTS system incurs inconsistency by maintain-

ing remote copies asynchronously.5 However, it makes the 
master copy local, which decreases latency. This strategy 
works well in practice because single user data is naturally 
partitioned according to the user’s (normal) location. Ide-
ally, each user’s data master is nearby.

Facebook uses the opposite strategy:6 the master copy 
is always in one location, so a remote user typically has 
a closer but potentially stale copy. However, when users 
update their pages, the update goes to the master copy 
directly as do all the user’s reads for a short time, despite 
higher latency. After 20 seconds, the user’s traffic reverts to 
the closer copy, which by that time should reflect the update.

MANAGING PARTITIONS
The challenging case for designers is to mitigate a par-

tition’s effects on consistency and availability. The key 
idea is to manage partitions very explicitly, including not 
only detection, but also a specific recovery process and a 
plan for all of the invariants that might be violated during 
a partition. This management approach has three steps:

CAP CONFUSION

Aspects of the CAP theorem are often misunderstood, particularly 
the scope of availability and consistency, which can lead to 

undesirable results. If users cannot reach the service at all, there is no 
choice between C and A except when part of the service runs on the 
client. This exception, commonly known as disconnected operation or 
offline mode,1 is becoming increasingly important. Some HTML5 
features—in particular, on-client persistent storage—make discon-
nected operation easier going forward. These systems normally 
choose A over C and thus must recover from long partitions.

Scope of consistency reflects the idea that, within some boundary, 
state is consistent, but outside that boundary all bets are off. For 
example, within a primary partition, it is possible to ensure complete 
consistency and availability, while outside the partition, service is not 
available. Paxos and atomic multicast systems typically match this 
scenario.2 In Google, the primary partition usually resides within one 
datacenter; however, Paxos is used on the wide area to ensure global 
consensus, as in Chubby,3 and highly available durable storage, as in 
Megastore.4

Independent, self-consistent subsets can make forward progress 
while partitioned, although it is not possible to ensure global invari-
ants. For example, with sharding, in which designers prepartition data 
across nodes, it is highly likely that each shard can make some prog-
ress during a partition. Conversely, if the relevant state is split across a 
partition or global invariants are necessary, then at best only one side 
can make progress and at worst no progress is possible. 

Does choosing consistency and availability (CA) as the “2 of 3” 
make sense? As some researchers correctly point out, exactly what it 
means to forfeit P is unclear.5,6 Can a designer choose not to have parti-
tions? If the choice is CA, and then there is a partition, the choice must 
revert to C or A. It is best to think about this probabilistically: choosing 
CA should mean that the probability of a partition is far less than that 
of other systemic failures, such as disasters or multiple simultaneous 
faults. 

Such a view makes sense because real systems lose both C and A 
under some sets of faults, so all three properties are a matter of degree. 

In practice, most groups assume that a datacenter (single site) has no 
partitions within, and thus design for CA within a single site; such 
designs, including traditional databases, are the pre-CAP default. 
However, although partitions are less likely within a datacenter, they 
are indeed possible, which makes a CA goal problematic. Finally, given 
the high latency across the wide area, it is relatively common to forfeit  
perfect consistency across the wide area for better performance.

Another aspect of CAP confusion is the hidden cost of forfeiting 
consistency, which is the need to know the system’s invariants. The 
subtle beauty of a consistent system is that the invariants tend to hold 
even when the designer does not know what they are. Consequently, 
a wide range of reasonable invariants will work just fine.  Conversely, 
when designers choose A, which requires restoring invariants after a 
partition, they must be explicit about all the invariants, which is both 
challenging and prone to error. At the core, this is the same concurrent 
updates problem that makes multithreading harder than sequential 
programming.

References
 1. J. Kistler and M. Satyanarayanan, “Disconnected Operation in the Coda File 

System” ACM Trans. Computer Systems, Feb. 1992, pp. 3-25.
 2. K. Birman, Q. Huang, and D. Freedman, “Overcoming the ‘D’ in CAP: Using 

Isis2 to Build Locally Responsive Cloud Services,” Computer, Feb. 2011, pp. 
50-58.

 3. M. Burrows, “The Chubby Lock Service for Loosely-Coupled Distributed 
Systems,” Proc. Symp. Operating Systems Design and Implementation (OSDI 
06), Usenix, 2006, pp. 335-350. 

 4. J. Baker et al., “Megastore: Providing Scalable, Highly Available Storage for 
Interactive Services,” Proc. 5th Biennial Conf. Innovative Data Systems 
Research (CIDR 11), ACM, 2011, pp. 223-234. 

 5. D. Abadi, “Problems with CAP, and Yahoo’s Little Known NoSQL System,” 
DBMS Musings, blog, 23 Apr. 2010; http://dbmsmusings.blogspot.
com/2010/04/problems-with-cap-and-yahoos-little.html.

 6. C. Hale, “You Can’t Sacrifice Partition Tolerance,” 7 Oct. 2010; http:// 
codahale.com/you-cant-sacrifice-partition-tolerance.



COVER FE ATURE

COMPUTER 26

 • detect the start of a partition,
 • enter an explicit partition mode that may limit some 

operations, and
 • initiate partition recovery when communication is 

restored. 

The last step aims to restore consistency and compen-
sate for mistakes the program made while the system was 
partitioned.

Figure 1 shows a partition’s evolution. Normal operation 
is a sequence of atomic operations, and thus partitions 
always start between operations. Once the system times 
out, it detects a partition, and the detecting side enters 
partition mode. If a partition does indeed exist, both sides 
enter this mode, but one-sided partitions are possible. In 
such cases, the other side communicates as needed and 
either this side responds correctly or no communication 
was required; either way, operations remain consistent. 
However, because the detecting side could have incon-
sistent operations, it must enter partition mode. Systems 
that use a quorum are an example of this one-sided par-
titioning. One side will have a quorum and can proceed, 
but the other cannot. Systems that support disconnected 
operation clearly have a notion of partition mode, as do 
some atomic multicast systems, such as Java’s JGroups.

Once the system enters partition mode, two strategies 
are possible. The first is to limit some operations, thereby 
reducing availability. The second is to record extra infor-
mation about the operations that will be helpful during 
partition recovery. Continuing to attempt communication 
will enable the system to discern when the partition ends.

Which operations should proceed?
Deciding which operations to limit depends primarily 

on the invariants that the system must maintain. Given a 
set of invariants, the designer must decide whether or not 
to maintain a particular invariant during partition mode or 
risk violating it with the intent of restoring it during recov-

ery. For example, for the invariant 
that keys in a table are unique, 
designers typically decide to risk 
that invariant and allow duplicate 
keys during a partition. Duplicate 
keys are easy to detect during re-
covery, and, assuming that they 
can be merged, the designer can 
easily restore the invariant.

For an invariant that must be 
maintained during a partition, 
however, the designer must pro-
hibit or modify operations that 
might violate it. (In general, there is 
no way to tell if the operation will 
actually violate the invariant, since 

the state of the other side is not knowable.) Externalized 
events, such as charging a credit card, often work this way. 
In this case, the strategy is to record the intent and execute 
it after the recovery. Such transactions are typically part 
of a larger workflow that has an explicit order-processing 
state, and there is little downside to delaying the operation 
until the partition ends. The designer forfeits A in a way that  
users do not see. The users know only that they placed an 
order and that the system will execute it later.

More generally, partition mode gives rise to a funda-
mental user-interface challenge, which is to communicate 
that tasks are in progress but not complete. Researchers 
have explored this problem in some detail for disconnected 
operation, which is just a long partition. Bayou’s calendar 
application, for example, shows potentially inconsistent 
(tentative) entries in a different color.7 Such notifications 
are regularly visible both in workflow applications, such as 
commerce with e-mail notifications, and in cloud services 
with an offline mode, such as Google Docs.

One reason to focus on explicit atomic operations, 
rather than just reads and writes, is that it is vastly easier 
to analyze the impact of higher-level operations on invari-
ants. Essentially, the designer must build a table that looks 
at the cross product of all operations and all invariants 
and decide for each entry if that operation could violate 
the invariant. If so, the designer must decide whether to 
prohibit, delay, or modify the operation. In practice, these 
decisions can also depend on the known state, on the argu-
ments, or on both. For example, in systems with a home 
node for certain data,5 operations can typically proceed 
on the home node but not on other nodes.

The best way to track the history of operations on both 
sides is to use version vectors, which capture the causal 
dependencies among operations. The vector’s elements are 
a pair (node, logical time), with one entry for every node 
that has updated the object and the time of its last update. 
Given two versions of an object, A and B, A is newer than 
B if, for every node in common in their vectors, A’s times 

 
 

 
 

State: S'
 

Partition mode
Partition starts

Time

Partition
recovery

State: S2

State: S1State: S

Operations on S

Figure 1. The state starts out consistent and remains so until a partition starts. To stay 
available, both sides enter partition mode and continue to execute operations, creat-
ing concurrent states S1 and S2, which are inconsistent. When the partition ends, the 
truth becomes clear and partition recovery starts. During recovery, the system merges 
S1 and S2 into a consistent state S' and also compensates for any mistakes made during 
the partition.



Designers can choose to constrain 
the use of certain operations during 
partitioning so that the system can 
automatically merge state during 
recovery.

27FEBRUARY 2012

are greater than or equal to B’s and at least one of A’s times 
is greater. 

If it is impossible to order the vectors, then the updates 
were concurrent and possibly inconsistent. Thus, given the 
version vector history of both sides, the system can easily 
tell which operations are already in a known order and 
which executed concurrently. Recent work8 proved that 
this kind of causal consistency is the best possible outcome 
in general if the designer chooses to focus on availability. 

Partition recovery
At some point, communication resumes and the parti-

tion ends. During the partition, each side was available 
and thus making forward progress, but partitioning has 
delayed some operations and violated some invariants. 
At this point, the system knows the state and history of 
both sides because it kept a careful log during partition 
mode. The state is less useful than the history, from which 
the system can deduce which operations actually violated 
invariants and what results were externalized, including 
the responses sent to the user. The designer must solve two 
hard problems during recovery:

 • the state on both sides must become consistent, and 
 • there must be compensation for the mistakes made 

during partition mode.

It is generally easier to fix the current state by starting 
from the state at the time of the partition and rolling for-
ward both sets of operations in some manner, maintaining 
consistent state along the way. Bayou did this explicitly by 
rolling back the database to a correct time and replaying 
the full set of operations in a well-defined, deterministic 
order so that all nodes reached the same state.9 Similarly, 
source-code control systems such as the Concurrent Ver-
sioning System (CVS) start from a shared consistent point 
and roll forward updates to merge branches.

Most systems cannot always merge conflicts. For ex-
ample, CVS occasionally has conflicts that the user must 
resolve manually, and wiki systems with offline mode 
typically leave conflicts in the resulting document that 
require manual editing.10

Conversely, some systems can always merge conflicts 
by choosing certain operations. A case in point is text 
editing in Google Docs,11 which limits operations to ap-
plying a style and adding or deleting text. Thus, although 
the general problem of conflict resolution is not solvable, 
in practice, designers can choose to constrain the use of 
certain operations during partitioning so that the system 
can automatically merge state during recovery. Delaying 
risky operations is one relatively easy implementation of 
this strategy.

Using commutative operations is the closest approach 
to a general framework for automatic state convergence. 

The system concatenates logs, sorts them into some order, 
and then executes them. Commutativity implies the ability 
to rearrange operations into a preferred consistent global 
order. Unfortunately, using only commutative operations 
is harder than it appears; for example, addition is com-
mutative, but addition with a bounds check is not (a zero 
balance, for example).

Recent work by Marc Shapiro and colleagues at INRIA12,13 
has greatly improved the use of commutative operations 
for state convergence. The team has developed commuta-
tive replicated data types (CRDTs), a class of data structures 
that provably converge after a partition, and describe how 
to use these structures to

 • ensure that all operations during a partition are com-
mutative, or

 • represent values on a lattice and ensure that all opera-
tions during a partition are monotonically increasing 
with respect to that lattice. 

The latter approach converges state by moving to the 
maximum of each side’s values. It is a formalization and 
improvement of what Amazon does with its shopping 
cart:14 after a partition, the converged value is the union 
of the two carts, with union being a monotonic set opera-
tion. The consequence of this choice is that deleted items 
may reappear. 

However, CRDTs can also implement partition-tolerant 
sets that both add and delete items. The essence of this 
approach is to maintain two sets: one each for the added 
and deleted items, with the difference being the set’s mem-
bership. Each simplified set converges, and thus so does 
the difference. At some point, the system can clean things 
up simply by removing the deleted items from both sets. 
However, such cleanup generally is possible only while the 
system is not partitioned. In other words, the designer must 
prohibit or postpone some operations during a partition, 
but these are cleanup operations that do not limit per-
ceived availability. Thus, by implementing state through 
CRDTs, a designer can choose A and still ensure that state 
converges automatically after a partition.

Compensating for mistakes
In addition to computing the postpartition state, there 

is the somewhat harder problem of fixing mistakes made 



COVER FE ATURE

COMPUTER 28

during partitioning. The tracking and limitation of partition- 
mode operations ensures the knowledge of which invari-
ants could have been violated, which in turn enables the 
designer to create a restoration strategy for each such 
invariant. Typically, the system discovers the violation 
during recovery and must implement any fix at that time.

There are various ways to fix the invariants, includ-
ing trivial ways such as “last writer wins” (which ignores 
some updates), smarter approaches that merge opera-
tions, and human escalation. An example of the latter 
is airplane overbooking: boarding the plane is in some 
sense partition recovery with the invariant that there 
must be at least as many seats as passengers. If there are 
too many passengers, some will lose their seats, and ide-

ally customer service will compensate those passengers 
in some way. 

The airplane example also exhibits an externalized 
mistake: if the airline had not said that the passenger had 
a seat, fixing the problem would be much easier. This is 
another reason to delay risky operations: at the time of 
recovery, the truth is known. The idea of compensation is 
really at the core of fixing such mistakes; designers must 
create compensating operations that both restore an in-
variant and more broadly correct an externalized mistake. 

Technically, CRDTs allow only locally verifiable invariants 
—a limitation that makes compensation unnecessary but 
that somewhat decreases the approach’s power. However, a 
solution that uses CRDTs for state convergence could allow 
the temporary violation of a global invariant, converge 
the state after the partition, and then execute any needed 
compensations.

Recovering from externalized mistakes typically re-
quires some history about externalized outputs. Consider 
the drunk “dialing” scenario, in which a person does not 
remember making various telephone calls while intoxi-
cated the previous night. That person’s state in the light of 
day might be sound, but the log still shows a list of calls, 
some of which might have been mistakes. The calls are the 
external effects of the person’s state (intoxication). Because 
the person failed to remember the calls, it could be hard to 
compensate for any trouble they have caused.

In a machine context, a computer could execute orders 
twice during a partition. If the system can distinguish two 
intentional orders from two duplicate orders, it can cancel 
one of the duplicates. If externalized, one compensation 
strategy would be to autogenerate an e-mail to the cus-
tomer explaining that the system accidentally executed 
the order twice but that the mistake has been fixed and  
to attach a coupon for a discount on the next order. With-
out the proper history, however, the burden of catching the 
mistake is on the customer.

Some researchers have formally explored compensating 
transactions as a way to deal with long-lived transac-
tions.15,16 Long-running transactions face a variation of 
the partition decision: is it better to hold locks for a long 
time to ensure consistency, or release them early and 
expose uncommitted data to other transactions but allow 
higher concurrency? A typical example is trying to update 
all employee records as a single transaction. Serializing 
this transaction in the normal way locks all records and 
prevents concurrency. Compensating transactions take 
a different approach by breaking the large transaction 
into a saga, which consists of multiple subtransactions, 
each of which commits along the way. Thus, to abort the 
larger transaction, the system must undo each already 
committed subtransaction by issuing a new transaction 
that corrects for its effects—the compensating transaction.

In general, the goal is to avoid aborting other trans-

COMPENSATION ISSUES IN AN  
AUTOMATED TELLER MACHINE 

In the design of an automated teller machine (ATM), strong 
consistency would appear to be the logical choice, but in practice, 

A trumps C. The reason is straightforward enough: higher availa-
bility means higher revenue. Regardless, ATM design serves as a 
good context for reviewing some of the challenges involved in 
compensating for invariant violations during a partition.

The essential ATM operations are deposit, withdraw, and check 
balance. The key invariant is that the balance should be zero or 
higher. Because only withdraw can violate the invariant, it will need 
special treatment, but the other two operations can always 
execute.

The ATM system designer could choose to prohibit withdrawals 
during a partition, since it is impossible to know the true balance at 
that time, but that would compromise availability. Instead, using 
stand-in mode (partition mode), modern ATMs limit the net with-
drawal to at most k, where k might be $200. Below this limit, 
withdrawals work completely; when the balance reaches the limit, 
the system denies withdrawals. Thus, the ATM chooses a sophisti-
cated limit on availability that permits withdrawals but bounds the 
risk.

When the partition ends, there must be some way to both 
restore consistency and compensate for mistakes made while the 
system was partitioned. Restoring state is easy because the opera-
tions are commutative, but compensation can take several forms. A 
final balance below zero violates the invariant. In the normal case, 
the ATM dispensed the money, which caused the mistake to 
become external. The bank compensates by charging a fee and 
expecting repayment. Given that the risk is bounded, the problem 
is not severe. However, suppose that the balance was below zero at 
some point during the partition (unknown to the ATM), but that a 
later deposit brought it back up. In this case, the bank might still 
charge an overdraft fee retroactively, or it might ignore the viola-
tion, since the customer has already made the necessary payment.

In general, because of communication delays, the banking 
system depends not on consistency for correctness, but rather on 
auditing and compensation. Another example of this is “check 
kiting,” in which a customer withdraws money from multiple 
branches before they can communicate and then flees. The over-
draft will be caught later, perhaps leading to compensation in the 
form of legal action.



Learn more at: 
http://www.icde12.org/

1-5 April 2012
Washington, DC, USA

ICDE addresses research issues in designing, building, managing, and evaluating 
advanced data-intensive systems and applications.

ICDE 2012
28th IEEE International Conference on Data Engineering

29FEBRUARY 2012

actions that used the incorrectly committed data (no 
cascading aborts). The correctness of this approach de-
pends not on serializability or isolation, but rather on the 
net effect of the transaction sequence on state and outputs. 
That is, after compensations, does the database essentially 
end up in a place equivalent to where it would have been 
had the subtransactions never executed? The equivalence 
must include externalized actions; for example, refunding 
a duplicate purchase is hardly the same as not charging 
that customer in the first place, but it is arguably equiva-
lent. The same idea holds in partition recovery. A service 
or product provider cannot always undo mistakes directly, 
but it aims to admit them and take new, compensating 
actions. How best to apply these ideas to partition recov-
ery is an open problem. The “Compensation Issues in an 
Automated Teller Machine” sidebar describes some of the 
concerns in just one application area.

S ystem designers should not blindly sacrifice consis-
tency or availability when partitions exist. Using the 
proposed approach, they can optimize both prop-

erties through careful management of invariants during 
partitions. As newer techniques, such as version vectors 
and CRDTs, move into frameworks that simplify their 
use, this kind of optimization should become more wide-
spread. However, unlike ACID transactions, this approach 
requires more thoughtful deployment relative to past 
strategies, and the best solutions will depend heavily on 
details about the service’s invariants and operations. 

Acknowledgments
I thank Mike Dahlin, Hank Korth, Marc Shapiro, Justin Sheehy, 
Amin Vahdat, Ben Zhao, and the IEEE Computer Society vol-
unteers for their helpful feedback on this work.

References
 1. E. Brewer, “Lessons from Giant-Scale Services,” IEEE In-

ternet Computing, July/Aug. 2001, pp. 46-55.
 2. A. Fox et al., “Cluster-Based Scalable Network Services,” 

Proc. 16th ACM Symp. Operating Systems Principles 
(SOSP 97), ACM, 1997, pp. 78-91.

 3. A. Fox and E.A. Brewer, “Harvest, Yield and Scalable Toler-
ant Systems,” Proc. 7th Workshop Hot Topics in Operating 
Systems (HotOS 99), IEEE CS, 1999, pp. 174-178.

 4. E. Brewer, “Towards Robust Distributed Systems,” Proc. 
19th Ann. ACM Symp.Principles of Distributed Com-
puting (PODC 00), ACM, 2000,  pp. 7-10; www.cs.berkeley.
edu/~brewer/PODC2000.pdf. 

 5. B. Cooper et al., “PNUTS: Yahoo!’s Hosted Data Serving 
Platform,” Proc. VLDB Endowment (VLDB 08), ACM, 2008, 
pp. 1277-1288.

 6. J. Sobel, “Scaling Out,” Facebook Engineering 
Notes, 20 Aug. 2008; www.facebook.com/note.
php?note_id=23844338919&id=9445547199.

 7. W. K. Edwards et al., “Designing and Implementing Asyn-
chronous Collaborative Applications with Bayou,” Proc. 

10th Ann. ACM Symp. User Interface Software and Technol-
ogy (UIST 97), ACM, 1999, pp. 119-128.

 8. P. Mahajan, L. Alvisi, and M. Dahlin, Consistency, Avail-
ability, and Convergence, tech. report UTCS TR-11-22, Univ. 
of Texas at Austin, 2011.

 9. D.B. Terry et al., “Managing Update Conflicts in Bayou, a 
Weakly Connected Replicated Storage System,” Proc. 15th 
ACM Symp. Operating Systems Principles (SOSP 95), ACM, 
1995, pp. 172-182. 

 10. B. Du and E.A. Brewer, “DTWiki: A Disconnection and 
Intermittency Tolerant Wiki,” Proc. 17th Int’l Conf. World 
Wide Web (WWW 08), ACM, 2008, pp. 945-952.

 11. “What’s Different about the New Google Docs: Conflict 
Resolution,” blog; http://googledocs.blogspot.com/2010/09/
whats-different-about-new-google-docs_22.html.

 12. M. Shapiro et al., “Conflict-Free Replicated Data Types,” 
Proc. 13th Int’l Conf. Stabilization, Safety, and Security of 
Distributed Systems (SSS 11), ACM, 2011, pp. 386-400. 

 13. M. Shapiro et al., “Convergent and Commutative Replicated 
Data Types,” Bulletin of the EATCS, no. 104, June 2011, pp. 
67-88.

 14. G. DeCandia et al., “Dynamo: Amazon’s Highly Available 
Key-Value Store,” Proc. 21st ACM SIGOPS Symp. Operating 
Systems Principles (SOSP 07), ACM, 2007, pp. 205-220.

 15. H. Garcia-Molina and K. Salem, “SAGAS,” Proc. ACM 
SIGMOD Int’l Conf. Management of Data (SIGMOD 87), ACM, 
1987, pp. 249-259.

 16. H. Korth, E. Levy, and A. Silberschatz, “A Formal Approach 
to Recovery by Compensating Transactions,” Proc. VLDB 
Endowment (VLDB 90), ACM, 1990, pp. 95-106. 

Eric Brewer is a professor of computer science at the 
University of California, Berkeley, and vice president of 
infrastructure at Google. His research interests include 
cloud computing, scalable servers, sensor networks, and 
technology for developing regions. He also helped create 
USA.gov, the official portal of the federal government. 
Brewer received a PhD in electrical engineering and com-
puter science from MIT. He is a member of the National 
Academy of Engineering. Contact him at brewer@cs.
berkeley.edu.


